Hand in no. 1, 2, 3, 8 and 9 by November 6.

Assignment 8

1. Let $A = \{a_{ij}\}$ be an $n \times n$ matrix. Show that

$$|Ax| \le \sqrt{\sum_{i,j} a_{ij}^2} \ |x|$$

- 2. Let $A = (a_{ij})$ be an $n \times n$ matrix. Show that the matrix I + A is invertible if $\sum_{i,j} a_{ij}^2 < 1$. Give an example showing that I + A could become singular when $\sum_{i,j} a_{ij}^2 = 1$.
- 3. Let $f : \mathbb{R} \to \mathbb{R}$ be C^2 and $f(x_0) = 0, f'(x_0) \neq 0$. Show that there exists some $\rho > 0$ such that

$$Tx = x - \frac{f(x)}{f'(x)}, \quad x \in (x_0 - \rho, x_0 + \rho),$$

is a contraction. This provides a justification for Newton's method in finding roots for an equation.

4. Consider the iteration

$$x_{n+1} = \alpha x_n (1 - x_n), \ x_0 \in [0, 1]$$

Find

- (a) The range of α so that $\{x_n\}$ remains in [0, 1].
- (b) The range of α so that the iteration has a unique fixed point 0 in [0, 1].
- (c) Show that for $\alpha \in [0, 1]$ the fixed point 0 is attracting in the sense: $x_n \to 0$ whenever $x_0 \in [0, 1]$.
- 5. Show that every continuous function from [0,1] to itself admits a fixed point. Here we don't need it a contraction. Suggestion: Consider the sign of g(x) = f(x) x at 0, 1 where f is the given function.
- 6. Let f be continuously differentiable on [a, b]. Show that it has a differentiable inverse if and only if its derivative is not equal to 0 at every point. This is 2060 stuff.
- 7. Consider the function

$$f(x) = \frac{1}{2}x + x^2 \sin \frac{1}{x}, \quad x \neq 0,$$

and set f(0) = 0. Show that f is differentiable at 0 with f'(0) = 1/2 but it has no local inverse at 0. Does it contradict the Inverse Function Theorem?

- 8. Consider the mapping from \mathbb{R}^2 to itself given by $f(x,y) = x x^2$, g(x,y) = y + xy. Show that it has a local inverse at (0,0). And then write down the inverse map so that its domain can be described explicitly.
- 9. Let F be a continuously differentiable map from the open $U \subset \mathbb{R}^n$ to \mathbb{R}^n whose Jacobian determinant is non-vanishing everywhere. Prove that it maps every open set in U to an open set, that is, F is an open map. Does its inverse $F^{-1}: F(U) \to U$ always exist?

10. Consider the function

$$h(x,y) = (x - y^2)(x - 3y^2), \quad (x,y) \in \mathbb{R}^2.$$

Show that the set $\{(x, y) : h(x, y) = 0\}$ cannot be expressed as a local graph of a C^1 -function over the x or y-axis near the origin. Explain why the Implicit Function Theorem is not applicable.